GROUP PARTITIONS VIA COMMUTATIVITY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Group Commutativity in Constant Time

Lipton and Zalcstein presented a constant time algorithm for testing if a group is abelian in 12. However, the reference only contains a short abstract without proof. In this paper, we give a self contained proof for an n 2 3 lower bound for the number of pairs (a, b) of elements with ab 6= ba in every non-commutative group of size n. It implies a constant time randomized algorithm that tests i...

متن کامل

Group Actions on Partitions

We introduce group actions on the integer partitions and their variances. Using generating functions and Burnside’s lemma, we study arithmetic properties of the counting functions arising from group actions. In particular, we find a modulo 4 congruence involving the number of ordinary partitions and the number of partitions into distinct parts.

متن کامل

Bichromatic Discrepancy via Convex Partitions

Let R be a set of red points and B a set of blue points on the plane. In this paper we introduce a new concept for measuring how mixed the elements of S = R ∪ B are. The discrepancy of a set X ⊆ S is ||X ∩ R| − |X ∩ B||. We say that a partition Π = {S1, S2, . . . , Sk} of S is convex if the convex hulls of its members are pairwise disjoint. The discrepancy of a convex partition of S is the mini...

متن کامل

Testing Commutativity of a Group and the Power of Randomization

Let G be a group generated by k elements G = ⟨g1, . . . , gk⟩, with group operations (multiplication, inversion, comparison with id) performed by a black box. We prove that one can test whether the group G is abelian at a cost of O(k) group operations. On the other hand, we show that deterministic approach requires Ω(k) group operations.

متن کامل

Noncrossing Partitions for the Group Dn

Abstract. The poset of noncrossing partitions can be naturally defined for any finite Coxeter group W . It is a self-dual, graded lattice which reduces to the classical lattice of noncrossing partitions of {1, 2, . . . , n} defined by Kreweras in 1972 when W is the symmetric group Sn, and to its type B analogue defined by the second author in 1997 when W is the hyperoctahedral group. We give a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Algebra

سال: 2019

ISSN: 1306-6048

DOI: 10.24330/ieja.504159